Prostatepedia

Conversations With Prostate Cancer Experts


Leave a comment

Dr. Daniel Spratt: On Becoming A Doctor

Dr. Daniel Spratt is a radiation oncologist and the Chair of the Genitourinary Division of Clinical Research at the University of Michigan Health System.

Dr. Spratt talks to Prostatepedia about why he became a doctor.

Not a member? Join us!

Why did you become a doctor?

Dr. Daniel Spratt: There are no physicians or healthcare workers in my family. I took an unconventional path to becoming a doctor. I started working as a personal trainer when I turned 18. I was always involved in fitness and exercise. I took some time off from going to college and worked one-on-one with clients.

At that time, I noticed that I liked being able to help change people’s lives and have that unique interaction. But there are limitations to what a personal trainer can do for a person. That inspired me to go back to college, focus on the research, and go to medical school to become a radiation oncologist.

How did you make your way to radiation oncology versus urology?

Dr. Spratt: In medical school, we rotate through a bunch of different specialties. All along, I thought I was going to be a neurosurgeon; that was my focus and my research. But I started to realize that I love to connect, to have the time and flexibility to discuss how patients are doing. I care more than just about the technical treatment. I enjoy emotionally connecting with patients.

The radiation oncology industry is a unique specialty in that a machine delivers our treatments, and then we get to see the patient. I almost do two things at once. If a surgeon is operating all day, they can’t see anyone other than the one patient in front of them. I get to see and treat dozens of patients a day.

Are you still involved in the exercise world?

Dr. Spratt: Definitely. It is not as strong, but if you spoke to any of my patients, they’d tell you that I prescribe exercise to all of them. The side effect profile for my patients who are inactive versus the ones who are active is like night and day. It’s amazing how patients undergoing prostate cancer treatment, including radiation and especially hormone therapy, are improved by exercise. It doesn’t need to be joining a gym—just being active in some way.

The guys who are active have much fewer side effects during treatment. I jokingly prescribe exercise while

I prescribe radiation to them.

Maybe you shouldn’t joke and really do it!

Dr. Spratt: Exactly. I don’t think a pharmacy can fill that.

Subscribe to read the rest of Dr. Spratt’s comments.


Leave a comment

Shop Around For A Radiation Therapist

Dr. William Hall of the Medical College of Wisconsin offers advise to patients looking for a radiation therapist.

Not a member? Join us.

Dr. Hall says: Radiation therapy is an extremely technical specialty that is rapidly evolving. Many patients think that radiation therapy is the same, regardless of where they receive it.

That is not so.

Expertise, delivery methods, and the unique methods of radiation therapy administration can vary tremendously from hospital to hospital. That’s extremely valuable for patients to understand.

You should seek a radiation oncologist who specializes in your type of cancer, someone who focuses their research and clinical efforts on a few types of cancer. In larger academic centers, radiation oncologists tend to do that.

Join us to read the rest of Dr. Hall’s comments on radiation therapy for prostate cancer.


Leave a comment

Dr. William Hall On Why He Became A Doctor

webWilliamHallDr. William Hall is an Assistant Professor in the Department of Radiation Oncology at the Medical College of Wisconsin.

Prostatepedia spoke to him about why he became a doctor

Not a member? Join us.

Dr. William Hall: I never thought I was going to become a doctor. I was a biomedical engineer. I had a real passion for science, engineering, and programming. I also liked biology as a concept and as applied to helping people.

It wasn’t until the beginning of my senior year in college that I started to think about medical school. And it wasn’t until I began working as a biomedical engineer that I ultimately changed my career trajectory and went to medical school. I started my career as a biomedical engineer, and I pretty quickly realized that it didn’t give me the direct human interaction or tangible benefits that I desired in my work.

I tremendously enjoy being a doctor because I love science, and I love the applications of science. I like cool new science, and I love interacting with patients. Those two things make my job tremendously rewarding and fun. That’s really what got me here.

Join us to read Dr. Hall’s comments on precision radiation therapy for prostate.


Leave a comment

Radiation Therapy + The Abscopal Effect

Dr. Charles G. Drake of New York Presbyterian/Columbia University Medical Center, discusses the rare but intriguing abscopal effect.

Join us.

Dr. Charles Drake says: There was an article in the New England Journal of Medicine showing an abscopal response with Yervoy (ipilimumab) anti-CTLA-4 in a patient with melanoma. It was a beautifully done paper with nice immunological correlates. After that got published, we found that radiation oncologists and medical oncologists were giving people a combination of immunotherapy and radiation and were telling patients they would get abscopal responses. But that’s a bit overly ambitious. In the clinic, it’s not that easy. It’s going to be a while before we understand what’s needed therapeutically to be able to induce abscopal responses in the majority of patients. It’s going to take a little more work before we can have that happen broadly. On the other hand, if we can make it work, it’ll be fantastic. Dr. Hammers’ trial combining anti- PD-1, anti-CTLA-4, and radiation in kidney cancer is perhaps a more clever approach. That may be what we need to do.

In other words, abscopal responses do happen, but we don’t exactly know why or how and can’t reproduce it?

Dr. Drake: Exactly. And it doesn’t happen nearly as often as we’d like.

Subscribe to read the rest of Dr. Drake’s comments.


Leave a comment

Why Combine RT + Immunotherapy?

Dr. Charles G. Drake, of New York-Presbyterian/Columbia University Medical Center, discusses the thinking behind combining radiation therapy with immunotherapy.

Not a member? Join us. We’re talking about radiation therapy and prostate cancer in July.

Dr. Drake says: “The basic idea is that radiation, and perhaps other local modalities like cryotherapy, leads to destruction of tumor cells. If they’re destroyed in a way that’s immunogenic or pro-immunogenic, then the dying cells are taken up by resident antigen-presenting cells. These antigen-presenting cells get activated; they traffic to the draining lymph node, if you’re lucky. If they traffic to the draining lymph nodes, and then activate a systemic immune response (T cells), then maybe you can turn a local therapy into a systemic therapy. When that happens, it’s called the abscopal effect. We can demonstrate this in mice fairly readily, but it’s quite hard to demonstrate in humans.

In the literature, it’s not that common. There’s a review paper that reports around 60 total cases in the world that are clearly documented. But if you talk to people who take care of patients, everybody has one or two that they can talk about.”

Join us to read the rest of Dr. Drake’s comments on combining radiation therapy and immunotherapy.


Leave a comment

Dr. Charles Drake On A Memorable Patient

DRAKE charlesDr. Charles G. Drake is the Director of Genitourinary Oncology, Co-Director of the Cancer Immunotherapy Program, and Associate Director for Clinical Research at the Herbert Irving Comprehensive Cancer Center, New York-Presbyterian/Columbia University Medical Center.

Dr. Drake discusses a patient whose case intrigued him.

Have you had a particular patient who changed how you approach your work?

Dr. Charles Drake: Absolutely. I had a gentleman who had metastatic, castrate-resistant prostate cancer. He had been treated with hormonal therapy. He was about to go on chemotherapy. He had progression in his bone lesions, but he developed hematuria.

On CT scan, there was a fairly clear lesion in his bladder. We couldn’t tell what it was just by the scans, and his PSA was doubling quickly, it had reached 30 or so in less than a couple of months. We sent him to Dr. Ronald Rodriguez, who was at Johns Hopkins at the time, and he thought it looked like this was probably metastatic prostate cancer invading the gentleman’s bladder. Dr. Rodriguez did a transurethral fulguration, meaning he burned all of the tumor he could find in the bladder. After the procedure, he told me that there was a fair amount of prostate cancer left behind. While the procedure went well, and he got most of the tumor, he didn’t get all of it.

What happened next was fascinating. The patient’s PSA dropped. His PSA went from 30 to 20 to 10. It eventually nadired, or reached its lowest point, at less than 1 ng/ ml and he remained in remission for nearly two years. Although clearly anecdotal, in my mind, there is almost no question that this was one of those anecdotal abscopal responses, which makes you believe that it can happen. Almost certainly that was what happened for this patient. I’ll never forget it, frankly.

Interesting. An unexpected systemic response from local treatment, right?

Dr. Drake: Yes. It was brilliant. Just by treating the local disease in the bladder, this gentleman did well for over two years before it apparently progressed again, and he wound up getting chemotherapy. He also did very well with the chemo, so in my hopeful view, that suggests that maybe this fulguration procedure sparked a systemic immune response.

Join us to read the rest of Dr. Drake’s comments on the elusive abscopal effect.


Leave a comment

Dr. Robert Bristow On Genomics, Radiation Therapy + Prostate Cancer

Dr. Robert B. Bristow talks with Prostatepedia about the intersection of genomics and radiation therapy for prostate cancer.

Not a member? Join us.

Let’s talk about genomics. Do we have a way of predicting who will respond to radiation? And who will have severe side effects?

Dr. Robert B. Bristow: The short answer is no. My work with my colleagues in Canada involved a huge effort to sequence the entire genome, or the entire DNA network within prostate cancer in patients in the localized setting. What we know in localized disease is that there are a number of patients that under the microscope look like they have the same Gleason score. When we do whole genome sequencing, we see that about a quarter of these actually have a number of genetic rearrangements and mutations within their tumor.

It’s quite clear that the patients who have more aggressive mutations and increased number of mutations actually do worse. The way that they do worse is that they actually fail radiotherapy quite quickly after treatment. We therefore think that genetic instability, or the increased burden of mutation, is associated with hidden metastases as opposed to information about responding to surgery versus radiotherapy.

We’ve looked very hard in the Canadian study for a predictor of who would respond to radiotherapy versus who would respond to surgery. Although some early leads suggested one gene or another, I’m not confident right now that we actually have a marker so that when a patient comes into the clinic, we could do a quick test to say whether his disease was more or less sensitive to radiotherapy. We hope that will change, of course, with further data. But we don’t have it yet.

The other aspect that you pointed out is whether or not radiation side effects are associated with germline or blood DNA. Some data suggests there are specific gene mutations associated with cell growth, the way the cells contact each other, or DNA repair that might put patients at risk for erectile dysfunction or rectal bleeding. A lot of validation studies still need to be completed. It is also not ready for prime time.

Something that has come up in the last two to three years is that patients can have defects in genes associated with DNA repair. Your readers will have heard about the BRCA1 and BRCA2 genes normally associated with ovarian and breast cancer. We now know if you are a male BRCA2 carrier you have an increased risk for prostate cancer and an increased risk of aggressive prostate cancer.

One Canadian study suggested that some of these localized cancers in BRCA carriers already had acquired resistance patterns to hormone therapy and other types of therapy even though they had never seen the therapy. They are almost primed for resistance.

We also know that maybe up to 15% of patients with metastatic castrate-resistance prostate cancer have DNA repair defects. This is important because it speaks to mechanisms of resistance and aggressiveness based on genes in your bloodline. The other important thing we’ve learned in the last five years is that prostate cancer patients with BRCA1 and BRCA2 DNA repair defects respond to PARP inhibitors.

This is a very exciting area of precision oncology using genomics to predict those patients that might respond to a molecular-targeted therapy in this case.

One can only assume that there might be other stories like the DNA repair defect story that would give us more information about different types of tumors.

Dr. Bristow: This comes back to what we were talking about before: carefully designing clinical trials to compare one treatment versus another in large numbers of patients in which there is high content information about the immune landscape, genetics of the tumor, genetics of their bloodline, and functional imaging of the tumors. This will allow us to start to put this information together to come up with a more precise way of treating our patients.

Cancer is complex. The complexities of cancer are for us to discover, but also for us to develop a number of tests that give us a sense of that complexity so that we can use the right treatment for the right patient at the right time.

The promise of genomics in the last decade is now leading to novel treatment for patients. There are still situations for which we don’t know the best treatments. In those cases, patients need to demand from their healthcare givers information about which clinical trials are available to them so that we can solve these questions together. The reality is that we do require clinical trials to answer them.

Join us to read the rest of Dr. Bristow’s comments on genomics, radiation therapy.