Prostatepedia

Conversations With Prostate Cancer Experts


Leave a comment

Clinical Trial: Free Genetic Testing

Dr. Heather Cheng is an Assistant Professor at the University of Washington and Fred Hutchinson Cancer Research Center, and the Director of the Seattle Cancer Care Alliance Prostate Cancer Genetics Clinic.

Prostatepedia spoke with her about a clinical trial she’s running that looks at inherited genetics of men with metastatic prostate cancer.

What attracted you to medicine?

Dr. Heather Cheng: There are a couple of things I love about medicine and especially oncology. One is getting to know patients, finding out what’s most important to them as people, and using that information to help guide discussions and decisions about their treatment in a way that is true to what is most important to them. These days I guess you call this shared decision-making. That’s the most rewarding part about what I do.

Have you had any patients over the years who have changed how you see your own role or how you view the art of the medicine?

Dr. Cheng: I have a lot of patients who fit those criteria. My interest in this area started when I was a first-year Hematology and Oncology fellow. I was in the clinic and it was when we were at the beginning of this wave of new exciting drugs that prolong survival, such as Zytiga (abiraterone) and Xtandi (enzalutamide).

I met this patient who was 43 years old; he had new, aggressive metastatic prostate cancer. His disease blew through every one of the new drugs. It was extremely humbling and disappointing because we were so excited about these drugs, but they didn’t do much to slow his disease. And it was heartbreaking because he was so young. He had a family history of cancer but not prostate cancer. He had a teenaged son. We had a lot of discussions about the effect of his disease on his son. I wondered if there was something genetic, something that was making his cancer so aggressive. And then, what could this mean for his son? His memory has stuck with me.

When I think about the work and research that I do, it’s not just for the individual patient in front of me. I’m also thinking about how we can improve things and advance the field so things can be better for the next generation. How can we make progress as quickly and with as much positive impact as possible?

I met another patient who had a great effect on me. He had just been diagnosed with high-risk prostate cancer, Gleason 9. He was planning to get radiation. As part of a research study, we offered to sequence the DNA of his cancer because he had an unusual appearance of his cancer– ductal histology. He was kind and generous enough to volunteer and participate. It wasn’t going to affect his treatment, but he agreed to help us learn more.

In his cancer, we found a mutation in the BRCA2 gene, the one that many people may have heard of because of its association with breast and ovarian cancer risk. There was suspicion that the mutation could be inherited, so we brought him back for dedicated genetic testing for inherited cancer risk. And, it turns out he did have an inherited version of that mutated BRCA2 gene. He was the first person in his family to be found to carry the mutated version of BRCA2. Neither he nor his family would have known until later if we had not looked in his tumor.

After this, some of his relatives had genetic counseling and were also tested. The sister who had breast cancer had a recurrence and was found to carry the BRCA2 mutation. This information was important for her because it offers additional treatment opportunities for her cancer that might not have otherwise been considered. His daughter was also found to carry the BRCA2 mutation and after learning of this, had a mammogram and was diagnosed with breast cancer. She’s still curable, so she’s going through treatment, but it is possible that she might not have known until much later otherwise.

The importance of test results can extend to relatives in a way that might help more than one person, not just the person that I see in the clinic, but other members of their family. I do want to be clear that these mutations are not found in most people— even those with cancer—but for the people who have these mutations, it can be life saving information for their family members.

What will you be doing, and what can men expect to happen, during your clinical trial?

Dr. Cheng: You can learn about the study from your doctor, support group, or by visiting our website, http://www.GentlemenStudy.org. There is information about the study. You can consent online, confirm that you have metastatic prostate cancer, and check that you’re interested in genetic testing for cancer risk.

There is a questionnaire that many take about 40 minutes to complete, that asks about your knowledge of genetics, basic health, family history of cancer, and demographic information about where you live.

You can upload supporting information about your diagnosis, or you can check a box saying you’d like help from the research team to gather that information on your behalf. Because there are strict privacy laws around medical records, you need to give permission to our team to get medical information for the study on your behalf.

To be eligible, you must have metastatic prostate cancer and must live in the United States. There’s one other exclusion, which is that if you have some blood disorders such as leukemia, we cannot be sure that the test results are valid.

If you meet criteria, you will be mailed a saliva kit, a medical-grade genetic test through Color Genomics, with instructions on how to provide a saliva sample. Follow the instructions carefully and then mail the kit back. Results are typically available within 4 weeks. You will have access to a genetic counselor following your results, and you are invited to follow up in person to our clinic if you live in the area. If you don’t live near us, we can direct you to resources to find a genetic counselor for in-person visit or by telehealth.

The testing for this study is not recreational testing. It is not the same as Ancestry.com or 23andMe. This is clinical, medically appropriate testing if you have metastatic prostate cancer.

Do you share this information with their doctor, or is it up to them to share the information with their doctor?

Dr. Cheng: We strongly encourage participants to share the results and information with their doctors, but our ethical board does not allow us to do this for participants without their specific consent.

Are there any fees for patients?

Dr. Cheng: There is no fee for the patient.

It sounds similar to the process for the Metastatic Prostate Cancer Project, except I don’t think they share their results.

Dr. Cheng: Yes, it is similar to that project. The difference is that the patient or the participant gets results that apply to them individually. The Metastatic Prostate Cancer Project, which is fantastic and an important and innovative study, is de-identified, and the patient doesn’t get individual-level results back.

Their goal is to amass as much data as they can for research.

Dr. Cheng: Correct, yes.

Are you also cataloging the information that you collect?

Dr. Cheng: Yes.

What will you do with the data that you collect?

Dr. Cheng: We’ll be looking at demographics, the proportion of people who have mutations (pathogenic variants), information about family history, and validated measures of knowledge, distress measures and satisfaction with testing.

If patients consent to re-contact, they will be contacted at the conclusion of the study. If there are other follow-up studies, they can opt to learn about those. There will also be an invitation for those who agree to subsequent studies, like treatment studies or PARP-inhibitor studies, for example.

We’re still learning about certain genes, such as ATM mutations and CHEK2 mutations. As we learn more, we may want to update participants on what the field has learned. There are still many important questions that the field needs to answer, and patient engagement and participation will make this happen more quickly. There will be opportunities for those downstream studies.

How many patients are you looking for, overall?

Dr. Cheng: The plan was for 2,000. We have sent kits out to over 350. We still have room for participation!

Join us to read the issue and learn how to participate in Dr. Cheng’s study.

 


Leave a comment

Genomics, Predicting Side Effects, + Clinical Trial Design

Dr. Felix Feng is a physician-scientist at University of California, San Francisco (UCSF) keenly interested in improving outcomes for patients with prostate cancer.

His research centers on discovering prognostic/predictive biomarkers in prostate cancer and developing rational approaches to targeted treatment for therapy-resistant prostate cancer. He also sees patients through his prostate cancer clinic at UCSF.

Prostatepedia spoke with him about genomics, predicting side effects and the future of prostate cancer clinical trials

Can genomics predict who will have certain side effects?

Dr. Feng: There have been a number of studies that have used single nucleotide changes within DNA sequences, called single nucleotide polymorphisms (SNPS), to predict who will be most likely to experience side effects from radiation therapy for cancer.

In general, the signal from these toxicity studies has been weaker than the signals from biomarkers that predict responses to particular therapies, like the ones that I mentioned earlier. This may be reflective of the fact that radiation acts through a variety of mechanisms, so any single biomarker may not work well. Even when you cluster biomarkers, it may not account for the heterogeneous manner in which radiation causes a biological effect.

What should patients know about how genomics is impacting treatment?

Dr. Feng: Many of the clinical trials being developed nowadays incorporate genomics. We have clinical grade assays to look at genomics. We have strong biological rationale for why certain genomic biomarkers may identify subsets of patients who can respond to specific therapies. Because genomics is routinely used to personalize treatment in the context of diseases like breast cancer, colon cancer, and melanoma, it’s only expected that genomics will have a major role in prostate cancer going forward.

Will incorporating genomics into clinical trial design accelerate the speed of innovation?

Dr. Feng: I think it will. If you look at metastatic castration-resistant prostate cancer, for example, a number of therapies have been approved by the FDA over the last decade for those patients, including agents like Zytiga (abiraterone) and Xtandi (enzalutamide), next generation taxanes, Provenge (sipuleucel-T), and Xofigo (radium-223). All of these agents extend survival by just a few months.

This is invariably what happens when you treat prostate cancer as one disease entity rather than a variety of different entities that are governed by different genomic events. As we become better at selecting therapies based on a patient’s genomic events, we should see longer response times to available therapies and those currently being developed.

Not a member? Join us.


Leave a comment

Patients Speak: I Had Genomic Testing

Steve S. talks to Prostatepedia about how genomic testing gave him confidence that active surveillance was a safe choice for him.

Join us.

How did you find out that you had prostate cancer?

Steve: I don’t remember exactly, but I think I went to the urologist on the recommendation of a doctor who said I should have some PSA tests. I went to the urologist. The urologist ran some PSA tests and said, “They’re a little elevated. Maybe we need to run a biopsy,” which they did. That was about ten years ago. The biopsy came back with three or four cores indicating cancer with a Gleason score of 6 (3+3), which has remained the same over the last ten years. I think that’s what happened.

What kinds of genomic tests did you have and when?

Steve: That happened about five years later. I went to a support group and I heard about genomic testing. My doctor at the time hadn’t mentioned anything about genomic testing to me. I said to him that I didn’t see any downside in having genomic testing. Why couldn’t I have it? He said that he didn’t think it would be covered by my insurance and it’s not something they had done. I felt like a little bit of a pioneer.

I actually got on the phone with the people at Genomic Health in California and asked how much the test would cost. They mentioned a figure of about $500. I asked, “So that’s what I’m going to be charged?” They said, “Probably.” They weren’t really clear about it. In the end I was never charged.

They sent three results to my physician after a few weeks. Because my physician had never given them instructions as to what risk category he felt that I was in, they sent back three results based on different risk profiles. To this moment, I still don’t know exactly which risk profile I fit into.

All three results looked somewhat encouraging to my layperson’s eyes. I discussed the results with the doctor at the time and he said, “I think this confirms what we’re doing at the moment is right. You can continue on active surveillance, but of course it’s your choice.” They will always say that….

The results definitely changed your treatment path?

Steve: I was already on active surveillance, although in the first two or three years, I was thinking about some form of radiation therapy.

We talked about seeds. We talked about beams. I even talked to a friend a few years older than me who had gone through proton beam therapy and he was very encouraged by his results. My insurance at the time did not cover that, so proton beam therapy came off the table. I was not thinking about surgery. I was turned off by the idea of surgery, even though they had a DaVinci robot.

Then I got the OncoTypeDX test. I looked at the results with my physician and decided to proceed. It confirmed what I was already inclined towards.

Do you feel like it gave you more confidence in your decision?

Steve: Yes. I think so. I think that’s fair to say.

Would you recommend that other men take these tests?

Steve: Everybody has a very different psychological makeup. For example, I’ve got a brother-in-law who doesn’t have prostate cancer, but is very educated on medical matters. He’s a smart guy, and so I talked to him about it. He said, “God, if it was me, I would take care of it right away. I’d have that prostate out of there and have peace of mind.” I responded with: “I’ve lost very little sleep over the years about it.” That’s just my makeup. It doesn’t bother me. I’ve got other things to think about, other things I care about. Health is very, very important.

I’m not a complete passenger in this process. That’s why it’s called active surveillance. I’m very careful about going to my doctor’s appointments, following up, trying to keep myself educated, and so forth. Would I recommend it to somebody else? Somebody else who has the same psychological makeup that I do? Absolutely. Somebody who is a nervous person, a Type A person, somebody who is likely to lose sleep? Perhaps not. I don’t see any possible downside to the testing, though. It’s another tool for you and your doctor to use to help you make your decisions.

Not a member? Join us to read the rest of this month’s conversations about genomics.


Leave a comment

Genomics + Prostate Cancer Care

Dr. David J. VanderWeele is an Assistant Clinical Investigator in the Laboratory of Genitourinary Cancer Pathogenesis at the National Cancer Institute. He is particularly interested in investigating the progression of clinically significant prostate cancer.

Prostatepedia spoke with him about how genomics impacts patient care.

Join us!

What is genomics, and how does it differ from genetics?

Dr. VanderWeele: Typically if you’re talking about genetics, you’re talking about an individual gene or a small set of genes. When you refer to genomics, you’re referring to all the genes or a very large set of genes. Genomics usually refers to the genes–the DNA sequence. But sometimes genomics is also used to refer to when those genes get expressed (as RNA), or to other changes to the DNA that don’t change the DNA sequence (also called epigenetics).

What do and don’t we know about why some men develop curable or indolent prostate cancers while some develop widely lethal diseases?

Dr. VanderWeele: A lot of effort has been put into trying to learn more about the genes you inherit from your parents and how that influences the likelihood that you’re diagnosed with cancer. Most of that effort has been unable to identify which alterations in your genes make it more likely that you will get an aggressive versus an indolent cancer.

As many of your readers probably know, many people get indolent prostate cancers. In fact, many autopsy studies have looked at patients who have died of other reasons and have never been diagnosed with prostate cancer. Once men reach their 70s or 80s, it looks like more than half of men develop prostate cancer. Of course, those are relatively slow-growing cancers.

The most information that we have now is that men who come from families with breast and ovarian cancer syndrome appear to be more likely to get cancer and more likely to get aggressive cancer. These involve BRCA1, BRCA2, and other DNA repair genes in a similar pathway. Though there aren’t FDA-approved therapies yet, there are trials suggesting that these patients are also more likely to respond to certain therapies approved for breast and ovarian cancer.

This is a pretty small subset of all the men with prostate cancer, but the percentages increase with any kind of measurement of aggressiveness. If you look at people with localized cancer, that percentage increases if you have high-grade cancer versus low-grade cancer. The percentage increases if you compare people with advanced castrate-resistant prostate cancer to those with localized cancer.

If you look at the length of time between a man’s diagnosis and when he dies, that rate increases significantly the shorter that time is. That is just looking at three of these genes, BRCA1, BRCA2, and ATM. If you look at a broader number of these DNA repair related genes, it looks like ten to twelve percent of all patients with castrate-resistant prostate cancer harbor a mutation that they inherited from their parents. It seems likely that for most of those patients, that inherited gene contributed to their prostate cancer.

That has led to some debate about how often we should test for mutations in these genes. Is that a high enough number that we should test everyone with castrate-resistant prostate cancer? Should we still rely on family history to provide guidance for which people should be tested?

Is it really expensive to test those men? Why wouldn’t you just go ahead and test?

Dr. VanderWeele: Depending on how you do it, testing costs have come down quite a bit.

But when you’re testing for genes that could potentially be passed on to your offspring, or that siblings or other family members may have inherited, there are implications for your other family members, not just for you.

Some members of your family may definitely want to know that information and think that more information is better. Others may feel that if they find out that they harbor that gene mutation, they will just feel like they’re waiting for the other shoe to drop. It’s not information that they’d want to know.

Generally, we advise people to get counseling to help them think through some of these issues before getting tested for genes they’ve inherited from their parents.

Do we know why some men respond to certain drugs and therapies and others don’t?

Dr. VanderWeele: There’s a lot of interest in that. There has been some progress made in terms of identifying the biomarkers that might suggest which patients are more likely to respond to which types of therapies. At this point, however, most patients still get treated with most therapies.

There are some genetic biomarker-driven therapies that look like they’re on the horizon. Patients with mutations in BRCA2, ATM, and related genes are more likely to respond to a type of therapy called PARP inhibitors, which are currently approved for patients with ovarian or breast cancer, but not yet for prostate cancer.

There was a single Phase II study that showed that patients who had loss of a specific tumor-suppressor gene called

PTEN are more likely to respond to a certain type of targeted therapy. There are larger ongoing trials to demonstrate that these are indeed predictive biomarkers for response to these therapies.

There are companies like FoundationOne and GenomeDX that look at the molecular features of a man’s cancer. Are those tests useful? What do they tell a patient?

Dr. VanderWeele: The FoundationOne test looks for mutations, deletions, or amplifications of specific genes that are relevant for a wide array of cancers. There are a lot of companies offering this type of sequencing.

Many hospitals offer their own version of it. A FoundationOne type of test can tell you if you have a mutation in BRCA2 or ATM. They should also be able to tell you if you have a deletion in PTEN. When they detect a mutation is present, however, generally they are not looking to determine if you inherited those changes from your parents versus the mutation being present only in the tumor cells.

These genetic tests are more popular in other types of cancers, because for prostate cancer there aren’t yet any FDA-approved therapies that would be given based on the results of these tests. These tests will become more popular as we make progress in demonstrating the benefit of these specific therapies and in our ability to predict which patients are most likely to respond.

If a patient reading this gets one of those tests, is it likely that his doctor is going to know what to do with the results? Will the results actually impact his treatment?

Dr. VanderWeele: There are probably a small number of patients who will have a result that will directly impact their therapy. At this point, the way that it would impact therapy is that it might suggest that they should find a clinical trial testing a specific type of drug.

I see.

Dr. VanderWeele: There are also other commercially available prostate specific genetic tests, like the one performed by GenomeDX, that are mostly aimed at men with localized prostate cancer who are trying to decide how aggressive their therapy should be. Typically, this means whether they should pursue active surveillance or get surgery or radiation.

Sometimes these tests are also used to determine if a patient should get radiation after undergoing a prostatectomy or if he should just continue to follow PSA numbers. The prostate specific gene expression tests are RNA-based tests, which are a little different.

They measure the levels of expression of a few specific genes. Tests like FoundationOne look for mutations, amplifications, or deletions of genes—which means they are DNA-based tests.

Tests like Decipher are more widely used now, right?

Dr. VanderWeele: Yes. They’re probably used mostly by urologists. My sense is that how often urologists order those tests and how heavily they rely on them versus other ways to predict the risk level of the prostate cancer varies quite a bit from urology practice to urology practice.

Subscribe to read the rest of Dr. VanderWeele’s thoughts on how genomics impacts prostate cancer care.


Leave a comment

Can Decipher Change Your Prostate Cancer Treatment Plan?

Dr. John Gore is a clinician, surgeon, researcher, and educator specializing in urologic oncology and general urology at the University of Washington.

Prostatepedia spoke with him about how Decipher changes the way doctors treat men with prostate cancer.

What is Decipher?

Dr. Gore: Decipher is from a family of genomic tests. In general, it tries to look at some of the alterations in people’s genes associated with cancer or its progression. Decipher attempts to create a panel of genes associated with the likelihood of a cancer coming back. It takes that panel of genes and integrates it with clinical information to calculate the risk of developing spread of cancer to sites that could be detected clinically, like the bones or the lymph nodes, within five years after prostate cancer surgery.

When is a man likely to encounter this test? After that initial biopsy when he is first diagnosed? After his prostatectomy?

Dr. Gore: The most common scenario would be after surgery. If a man has his prostate removed and the pathology shows that he has a cancer that by all accounts seems to have been successfully treated with the surgery, Decipher may not be the right test for him.

If he has some high-risk features— his cancer is potentially encroaching on the shell of his prostate, he has a positive surgical margin, or there is involvement of the seminal vesicles that sit behind the prostate—then he might benefit from Decipher.

That way we can ask if—in addition to knowing that he had some high-risk pathology features—he appears genomically to have a high-risk cancer?

What do the results look like? Do they change how a man is going to be treated post-surgery? How?

Dr. Gore: The actual report that a patient or doctor gets tells them the probability, or percent risk, that he will have clinical metastases within five years of having his prostate removed for prostate cancer. In general, those numbers tend to be in the single digits to low teens. It’s not a common event.

For most people, prostate cancer surgery successfully treats their cancer. That is why this is best used on higher-risk individuals.

In our study, we looked at a cadre of patients who were either found to have high-risk features at the time of their prostate cancer surgery, or now their PSA is subtly rising after going to zero after surgery. Those patients should potentially have more aggressive treatment.

We showed that if a patient had the Decipher test, physicians’ recommendations changed. If your Decipher results showed a lower risk score, your doctor was more likely to recommend observation.

Patients with a higher risk Decipher score were more aggressively treated. They were recommended to go ahead and get additional radiation to the area where their prostate was removed, rather than just active surveillance.

The bottom line is that Decipher changes how men are treated?

Dr. Gore: Yes. We have some follow-up data we just presented at the American Society of Clinical Oncology, Genitourinary meeting in February that showed that those treatment recommendations were actually followed 80% of the time.

You said only men who are high-risk should really be tested. Not everyone getting prostate cancer surgery needs a Decipher Test?

Dr. Gore: That’s right.

Is Decipher widely accepted in the medical community? If a man in rural Minnesota goes to his local urologist or local community oncologist, will he likely be offered the Decipher Test? If not, should he ask his doctor to order it?

Dr. Gore: I think it’s definitely worth requesting it. One thing that has come up is insurance payer coverage, not just for the Decipher Test, but also for other tests like it. The bar that some of these companies have to cross to get their test approved is fairly high.

Some insurance companies are asking if the test not only changes treatment for patients. The trial they’re looking for will compare patients who got the Decipher Test with patients who didn’t to see if the decisions that were made impacted cancer outcomes. If, for example, your Decipher results say you’re high-risk, and you get radiation based on that information, was that the correct decision? The challenge is that prostate cancer is immensely slow-growing. Even when it’s high-risk, even when it’s aggressive, we’re talking about clinical outcomes that take years and years to manifest. It imposes an irrationally onerous burden to prove that these tests are the right thing.

You could wait 10 years to find out if the treatment decisions were correct. Meanwhile, time is passing and these men need to make choices…

Dr. Gore: Absolutely.

Join us to read the rest of Dr. Gore’s thoughts on the Decipher test for prostate cancer.


Leave a comment

Differences Between Prostate Cancer Genomic Tests

Eric A. Klein, MD, is an international leader in the biology and management of prostate cancer. Dr. Klein serves as Chairman of the Glickman Urological & Kidney Institute at the Cleveland Clinic.

Prostatepedia spoke with him about the differences between the various genomic tests available to prostate cancer patients.

Dr. Eric Klein: These tests measure the expression of genes in prostate cancer. That’s what they’re designed to do. They predict the likelihood of your having higher-grade cancer or cancer that penetrates the rind around the prostate (called extraprostatic extension), or cancer in the lymph nodes or seminal vesicles. These tests predict that better than biopsy or plain old Gleason grading. This gives us a leg up in deciding who is a good candidate for surveillance.

If your biopsy only shows Gleason 6, but you actually have higher-grade cancer in the prostate, or you have some cancer that’s through the rind or in the seminal vesicles, you’re not a good candidate for surveillance. We know that from decades of doing radical prostatectomies. These patients are at highest risk for progression and that’s what these tests measure.

They also tell us whether a pure Gleason 6 cancer is one of the 5-10% that has molecular features of high-grade cancer.

These are biopsy-based tests. For example, if a patient has a biopsy that shows Gleason 6 cancer and otherwise favorable features, such as a PSA below 10, and a PSA density below 0.15, we wonder whether he’s a candidate for surveillance. We always do a confirmatory test after a first biopsy. Decipher can also be used after the prostate has been removed to help decide on the need for additional treatment.

A genomic test like this is appropriate in some patients. An MRI of the prostate is appropriate in others. Sometimes it’s appropriate to get both. We don’t have enough experience to know which is the best test for which scenario, although I have some ideas about that. Then, once we confirm that the patient has a low-grade cancer that lacks molecular features of high-grade cancer, we feel confident in putting him on surveillance.

The results can do two things. They can confirm that the patient is a candidate for surveillance. Sometimes they can convince a reluctant patient that surveillance is the right thing. We don’t want to over-treat people who have low-grade cancers that aren’t going to kill them because the side effects of treatment are worse than the likelihood of his dying of cancer. Sometimes, the results can convince a physician that surveillance is the right thing. If you look at the criteria for putting people on surveillance, it’s mostly patients who have just a minimal amount of cancer–low-grade cancer, a Gleason 6 on a biopsy.

We published a study in the Journal of Urology recently that showed that even among patients with high-volume

Gleason 6 cancer in multiple cores— four or five remove cores—many have no molecular features of high-grade cancer. In the past, they haven’t traditionally been considered good candidates for surveillance, but based on the biology of their tumor, they are good candidates for surveillance.

You may have someone who has a couple of cores of low-grade cancer, maybe a PI-RADS 4 lesion on MRI.

You’re not sure if they’re a good candidate for surveillance or not. If a genomic test confirms the absence of molecular features of high-grade cancer, you can put the patient on surveillance. That is the kind of information that genomic tests provide. They have their nuances.

Oncotype and Decipher are good for patients with very low, low, and favorable intermediate-risk disease. Prolaris is best validated for patients who have intermediate risk disease. It doesn’t have good discriminatory value for low-grade cancers. Generally, they all measure gene expression and they’re all are used in the same way.

These tests help determine whether or not someone is a candidate for surveillance. At the moment, we don’t use these tests based on biopsy to determine which treatment to give a patient, but that’s coming. Post-prostatectomy, Decipher can help tell us that.

There are challenges to active surveillance. Say we put someone on surveillance and he starts out with 1 core of Gleason 6 cancer. A year later, he is re-biopsed and has 3 cores of Gleason 6 cancer. We don’t know whether that’s true biologic progression that requires treatment, if all that Gleason 6 cancer was there in the beginning and was just not sampled by biopsy, or if the patient grew some new Gleason 6 cancer that doesn’t have any biologic potential.

This isn’t established yet, but I believe we can use these tests for what I call serial biologic monitoring, meaning you biopsy patients a year or three apart. These tests, for the very first time, allow us to measure true changes in biology as opposed to just changes in what we see on biopsy, which may underestimate what’s going on in the prostate. This is a new paradigm.

Another common scenario is a man who has a low-grade cancer on initial biopsy (1 core, Gleason 6) and a year later has a little bit of Gleason 3+4 with 5% pattern 4 and 95% pattern 3. In the past, that would always trigger treatment. But it’s my belief, based on what we’ve learned from these tests, that this is probably not correct. Many of those men can still stay on surveillance.

Join us to read the rest of Dr. Klein’s thoughts on genomic tests for prostate cancer.

 


Leave a comment

Genetic Testing + Counseling

Ms. Merel Nissenberg is the President of the National Alliance of State Prostate Cancer Coalitions, a nation-wide organization comprised of state prostate cancer coalitions dedicated to saving men’s lives and enhancing the quality of life of prostate cancer patients and their families through awareness, education, and the development of a public policy network.

She talks to Prostatepedia about guidelines for genetic testing in men with prostate cancer.

Much has been written or suggested about the genetic component of some prostate cancers. For example, a family history of prostate cancer can increase a man’s risk of such a diagnosis. There have also been articles about the genetic component of certain breast cancers: BRCA1 and BRCA2 have historically been strongly implicated in the familial pathway for that diagnosis. What is more recent is the now more-firmly established connection between certain mutations like BRCA1 and BRCA2 and prostate cancer. However, guidelines for genetic testing in men with prostate cancer have been limited.

Recently, the Journal of Clinical Oncology published a special article entitled “Role of Genetic Testing for Inherited Prostate Cancer Risk: Philadelphia Prostate Cancer Consensus Conference 2017” following the Prostate Cancer Consensus Conference held in Philadelphia on March 3-4, 2017. Members of the panel strongly agreed that men should engage in shared or informed decision-making on the issue of genetic testing.

Panel members emphasized the strength of the inherited predisposition of prostate cancer, noting higher risks with BRCA1, BRCA2, and HOXB13 genes. The panel noted that prostate cancer patients with BRCA2 mutations have poor prostate cancer-specific outcomes. We now consider the link between prostate cancer and DNA mismatch repair (MMR) gene mutations to be stronger than we suspected, adding a specific opportunity for treatment. In fact, up to 12% of men with metastatic prostate cancer have inherited genetic mutations, mostly with BRCA1, BRCA2, and ATM. And targeted agents for these specific mutations confer better outcomes for these patients.

The panel concluded that: “Identifying genetic mutations of inherited prostate cancer… has implications for cancer risk assessment for men and their families, for precision treatment of metastatic disease, and is being incorporated into guidelines for individualizing prostate cancer screening strategies specifically for male BRCA1 and BRCA2 mutation carriers.”

Unfortunately there are no generally accepted standard guidelines for genetic counseling and genetic testing in prostate cancer, or standards on how to fully interpret results of current panels with multiple gene testing. The information discovered through genetic testing not only informs treatment for the prostate cancer patient himself, but is also an aid to other members of his family, including women who may have a genetic disposition for developing breast cancer. As for the patient, not only does the information potentially help guide prostate cancer treatment, but it also makes both him and his clinician aware of the potential for additional cancers.

The results of the Philadelphia Prostate Cancer Consensus Conference can be read in detail in the Journal of Clinical Oncology 36, no. 4 (February 2018), 414-424. Their considerations included the following:

  • which men should undergo genetic testing for prostate cancer;
  • which genes should be tested based upon clinical or family scenarios;
  • how the testing results should be used to inform screening for prostate cancer; and
  • how results should be used to inform treatment of early stage (localized), advanced stage (high-risk), and metastatic prostate cancer. Genetic testing done thoroughly and properly can help guide screening and treatment decisions.

The National Alliance of State Prostate Cancer Coalitions strongly endorses the use of genetic testing and genetic counseling for prostate cancer, and urges clinicians to read, consider, and follow the scientifically sound suggestions of the 2017 Philadelphia Prostate Cancer Consensus Statement on the Role of Inherited Prostate Cancer Risk. NASPCC will be presenting a Webinar on Genetic Testing and Genetic Counseling in Prostate Cancer on May 9, 2018. It is supported by Myriad Genetics. (Visit https://naspcc.org/index.php/may-9-2018-naspccwebinar to register.)